中国教育和科研计算机网 中国教育 高校科技 教育信息化 下一代互联网 CERNET 返回首页
“2018年度中国科学十大进展”公布,3所“985”高校项目入选
2019-02-28 中国教育网 张伟静

  2月27日,科技部基础研究管理中心发布“2018年度中国科学十大进展”,这些成果均正式发表于2018年度,涉及生命和医学科学、数理和天文科学、化学和材料科学、地球和环境科学等领域。

  根据得票数排名,“2018年度中国科学十大进展”入选项目如下:

  在10个入选项目当中,有3个项目分别来自3所不同的985高校,那么,到底是哪3所985高校呢?下面我们来看一下。

  一、浙江大学:揭示抑郁发生及氯胺酮快速抗抑郁机制


  抑郁症严重损害了患者的身心健康,是现代社会自杀问题的重要诱因,给社会和家庭带来巨大的损失。然而传统抗抑郁药物起效缓慢(6-8周以上),并且只在20%左右的病人中起效,这提示目前对抑郁症机制的了解还没有触及其核心。近年来在临床上意外发现麻醉剂氯胺酮在低剂量下具有快速(1小时内)、高效(在70%难治型病人中起效)的抗抑郁作用,被认为是精神疾病领域近半个世纪最重要的发现。然而,氯胺酮具有成瘾性,副作用大,无法长期使用。因此,理解氯胺酮快速抗抑郁的机制已成为抑郁症研究领域的“圣杯”,因为它将提示抑郁症的核心脑机制,并为研发快速、高效、无毒的抗抑郁药物提供科学依据。

  2018年,浙江大学医学院胡海岚研究组在这一领域的研究取得了突破性的进展:在抑郁症的神经环路研究中,该研究组发现大脑中反奖赏中心--外侧缰核中的神经元活动是抑郁情绪的来源。

  这一区域的神经元细胞通过其特殊的高频密集的“簇状放电”,抑制大脑中产生愉悦感的“奖赏中心”的活动。通过光遗传的技术手段,他们直接证明缰核区的簇状放电是诱发动物产生绝望和快感缺失等行为表现的充分条件。针对抑郁的分子机制,该研究组发现这种簇状放电方式是由NMDAR型谷氨酸受体介导的,作为NMDAR的阻断剂,氯胺酮的药理作用机制正是通过抑制缰核神经元的簇状放电,高速高效地解除其对下游“奖赏中心”的抑制,从而达到在极短时间内改善情绪的功效。同时,该研究组对产生簇状放电的细胞及分子机制做出了更深入的阐释。通过高通量的定量蛋白质谱技术,他们发现抑郁的形成伴随着胶质细胞中钾离子通道Kir4.1的过量表达。而Kir4.1通道对抑郁的调控植根于缰核组织中胶质细胞对神经元的致密包绕这一组织学基础。在神经元-胶质细胞相互作用的狭小界面中,Kir4.1在胶质细胞上的过表达引发神经元细胞外的钾离子浓度降低,从而诱发神经元细胞的超极化、T-VSCC钙通道活化,最终导致NMDAR介导的簇状放电。

  上述研究对于抑郁症这一重大疾病的机制做出了系统性的阐释,颠覆了以往抑郁症核心机制上流行的 “单胺假说”,并为研发氯胺酮的替代品、避免其成瘾等副作用提供了新的科学依据。同时,该研究所鉴定出的NMDAR、Kir4.1钾通道、T-VSCC钙通道等可作为快速抗抑郁的分子靶点,为研发更多、更好的抗抑郁药物或干预技术提供了崭新的思路,对最终战胜抑郁症具有重大意义。

  Science、Scientific American 等期刊对该工作进行了新闻报道,称“这是一项惊人的发现”。

  二、华中科技大学:测得迄今最高精度的引力常数G值


  牛顿万有引力常数G是人类认识的第一个基本物理常数,其在物理学乃至整个自然科学中扮演着十分重要的角色。两个世纪以来,实验物理学家们围绕引力常数G值的精确测量付出了巨大而艰辛的努力,但其测量精度目前仍然是所有物理学常数中最低的。按照牛顿万有引力定律,G应该是一个固定的常数,不因测量地点和测量方法的不同而变化。但是,当前国际上不同研究小组用不同方法测得的G值却不吻合。

  为了深入研究这一问题,华中科技大学物理学院引力中心罗俊、杨山清和邵成刚研究组自2009年开始同时采用两种相互独立的方法--扭秤周期法和扭秤角加速度反馈法来测量G值。历经多年的艰苦努力,2018年两种方法均获得了迄今为止国际最高的测量精度(G值分别为6.674184?×10?11和6.674484?×10?11m3/kg/s2,相对标准偏差分别为百万分之11.64和11.61),更为关键的是两个结果在3倍标准差范围内吻合。

  Nature 期刊以“引力常数的创纪录精度测量(Gravity measured with record precision)”为题发表评论,认为这项工作是迄今为止用两种独立的方法测定引力常数的不确定度最小的结果,为揭示造成万有引力常数测量差异的原因提供了非常好的机遇,同时也为进一步测量获得引力常数的真值提供了机遇;并评价这项工作是“精密测量领域卓越工艺的典范”。

  三、北京大学:揭示水合离子的原子结构和幻数效应


  离子与水分子结合形成水合离子是自然界最为常见和重要的现象之一,在很多物理、化学、生物过程中扮演着重要的角色。早在19世纪末,人们就意识到离子水合作用的存在并开始了系统的研究。100多年来,水合离子的微观结构和动力学一直是学术界争论的焦点,至今仍没有定论。究其原因,关键在于缺乏原子尺度的实验表征手段以及精准可靠的计算模拟方法。

  北京大学物理学院量子材料科学中心江颖、王恩哥和徐莉梅研究组与化学与分子工程学院高毅勤研究组等合作,开发了一种基于高阶静电力的新型扫描探针技术,刷新了扫描探针显微镜空间分辨率的世界纪录,实现了氢原子的直接成像和定位,在国际上首次获得了单个钠离子水合物的原子级分辨图像,并发现特定数目的水分子可以将水合离子的迁移率提高几个量级,这是一种全新的动力学幻数效应。结合第一性原理计算和经典分子动力学模拟,他们发现这种幻数效应来源于离子水合物与表面晶格的对称性匹配程度,而且在室温条件下仍然存在,并具有一定的普适性。

  该工作首次澄清了界面上离子水合物的原子构型,并建立了离子水合物的微观结构和输运性质之间的直接关联,颠覆了人们对于受限体系中离子输运的传统认识。这对离子电池、防腐蚀、电化学反应、海水淡化、生物离子通道等很多应用领域都具有重要的潜在意义。

  Nature Reviews Chemistry 期刊主编David Schilter发表评论文章认为,这项研究获得了“堪称完美的水合离子结构和动力学信息”。

  “中国科学十大进展”遴选活动由科技部基础研究管理中心牵头举办,至今已成功举办14届,旨在宣传我国重大基础研究科学进展,促进公众理解、关心和支持基础研究。“2018年度中国科学十大进展”由两院院士、973计划专家、国家重点实验室主任、部分国家重点研发计划负责人等2600余名专家学者,从30项候选科学进展中投票得出。

教育信息化资讯微信二维码

特别声明:本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系。

相关阅读
邮箱:gxkj#cernet.com
微信公众号:高校科技进展